

Modelación matemática de la interacción entre la vegetación de ribera y el régimen hídrico del río en condiciones semiáridas

(Defensa de Tesis Doctoral)

Por: Marco Morales de la Cruz

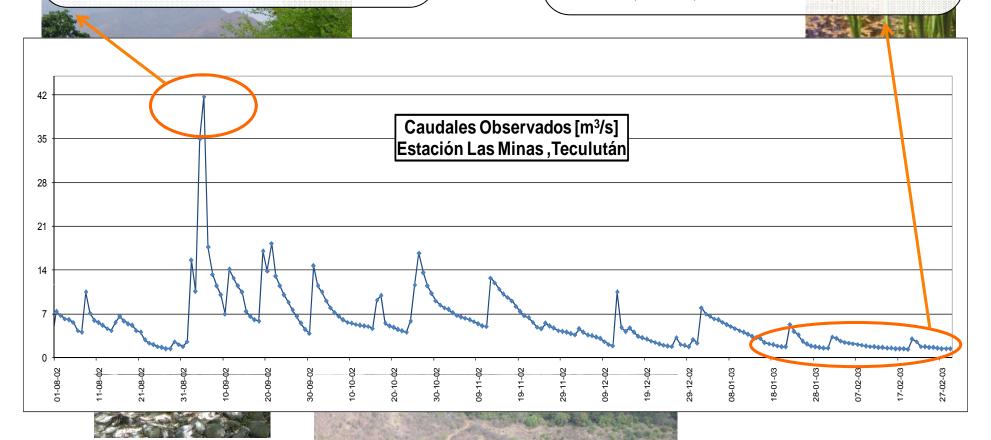
Valencia, 27 de diciembre de 2010

ÍNDICE DE LA PRESENTACIÓN

- Aspectos introductorios.
- Propiedades de suelo y de vegetación.
- 3. Conceptualización del Modelo RibAV.
- Aplicación del Modelo RibAV en el Valle del Motagua, Guatemala.
- Resultados de Calibración y Validación del "RibAV v.1.0"
- Conclusiones.
- 7. Futuras líneas de investigación
- 8. Principales aportes de la tesis.

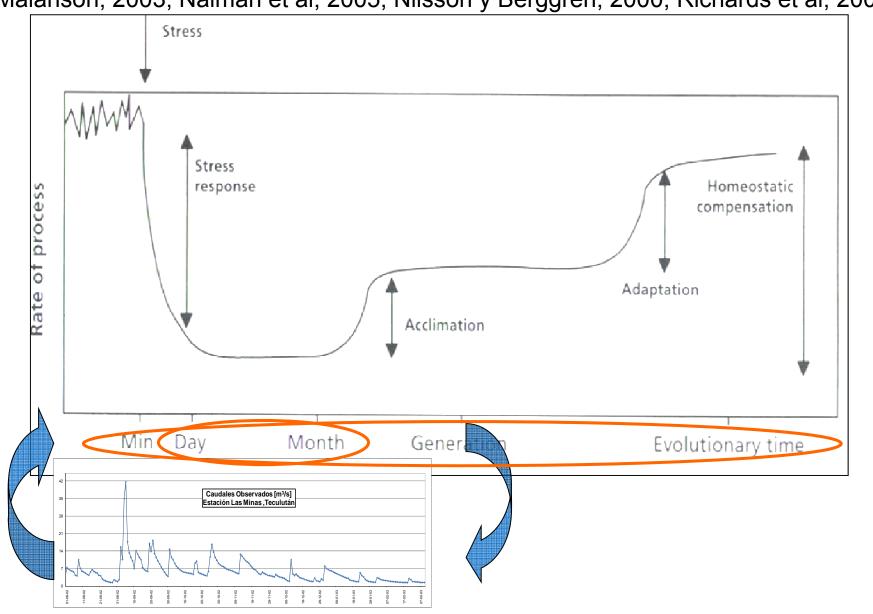
1. Aspectos introductorios:

Objetivo, Hipótesis y Fundamentos Hidrológicos y Ecológicos del Modelo de Agua y Vegetación de Ribera "RibAV"

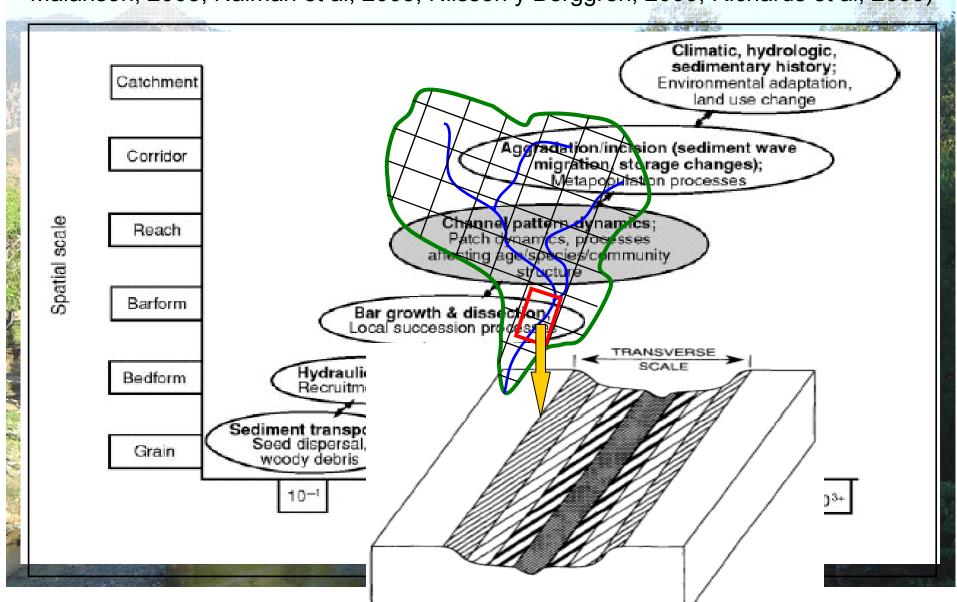


Interacción régimen hídrico del río – zona de ribera y su vegetación

INUNDACIONES: Brinson y Verhoeven, 1999; Brookes et al, 2000; Choi et al, 2005; Glenz, 2001; McGlynn y Seibert, 2003; Ocampo et al, 2006; Williams et al, 1998.


DISPONIBILIDAD de AGUA:

Baird y Maddock, 2005; Horton y Clark, 2000; Goodwin y Tarboton, 2001; Lite et al, 2005; Scott et al, 2000; Stromberg et al, 1993; Williams et al, 1998


Interacción de Escalas Temporales para modelar el Ciclo Hidrológico de Riberas (Baker, 1989; Bendix, 1994;

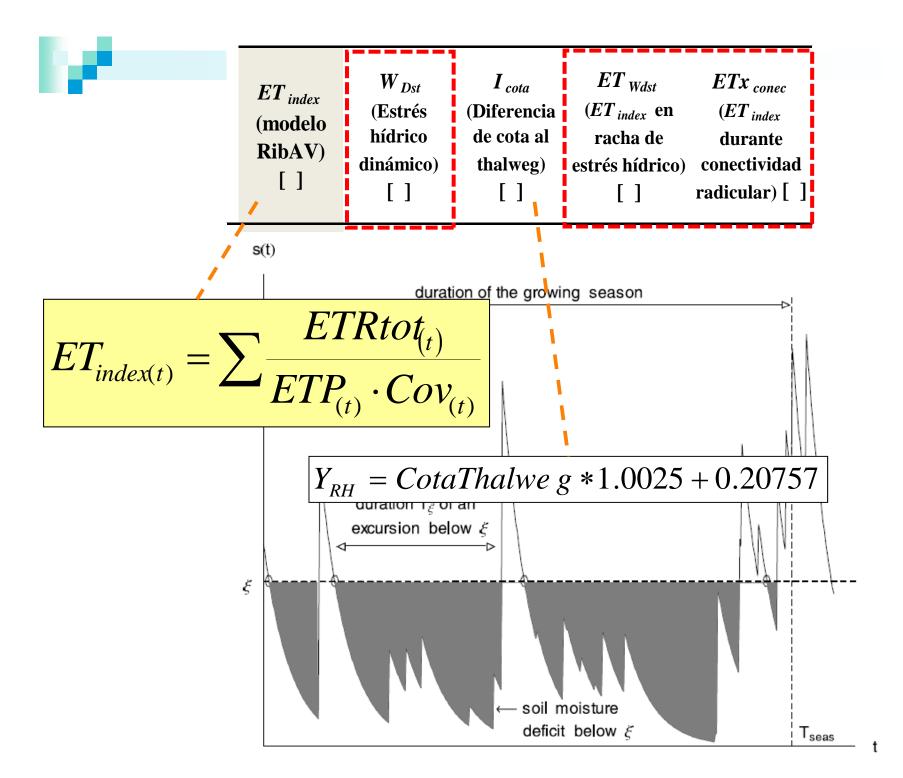
Malanson, 2003; Naiman et al, 2005; Nilsson y Berggren, 2000; Richards et al, 2000)

Interacción de Escalas Espaciales para modelar el Ciclo Hidrológico de Riberas (Baker, 1989; Bendix, 1994;

Malanson, 2003; Naiman et al, 2005; Nilsson y Berggren, 2000; Richards et al, 2000)

Objetivo

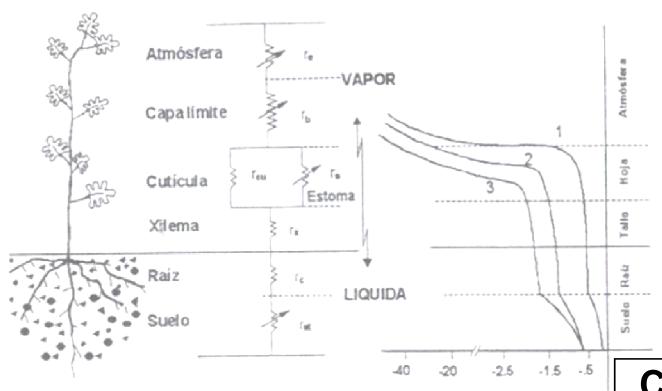
Desarrollar un modelo matemático que exprese la relación entre el régimen hidrológico e hidráulico del río con la vegetación de ribera y que tenga el potencial de predecir los tipos de vegetación ante cambios de dicho régimen hídrico.


Hipótesis del modelo

- Se aborda la interacción mediante modelación estática y con enfoque de zonificación.
- La disponibilidad de acceso al agua se considera como el control principal de la vegetación; no se enfatizan otros fenómenos producidos por las inundaciones.
- La presencia/ausencia vegetal se define estableciendo qué tipo de vegetación posee mayor evapotranspiración real en relación con la evapotranspiración potencial.

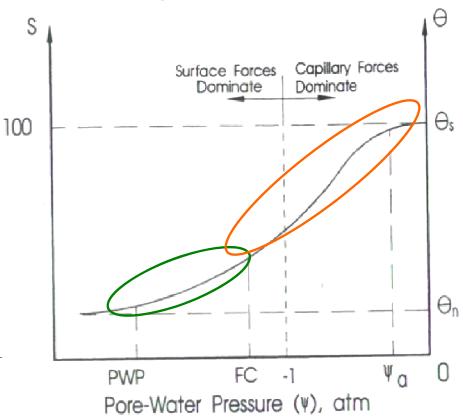
Índices para definir la "presencia / ausencia" de los tipos de vegetación con el *RibAV*

ET index (modelo RibAV) []	W _{Dst} (Estrés hídrico dinámico) []	I cota (Diferencia de cota al thalweg) []	ET Wdst (ET index en racha de estrés hídrico)	ETx conec (ET index durante conectividad radicular) []
-----------------------------	--	--	--	---


Butler et al, 2007; Eagleson, 2002; Franz et al, 2010; Horton y Clark, 2000; Lamontagne et al, 2005; Lautz, 2007; Laio et al, 2001; Porporato et al, 2001

2. Propiedades de suelo y de vegetación

Potencial de agua MPa

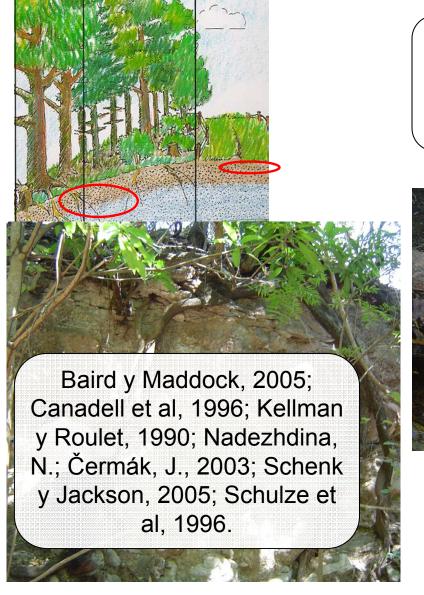

Continuo Suelo-Planta-Atmósfera

(Van den Honert, 1948; Taiz y Zeiger, 1998; Medrano y Flexas, 2004a).

Parámetros de Suelo

$$\psi_{(t)} = \frac{Hb}{\left[\frac{\theta_{(t)}}{\varphi}\right]^{1/\lambda}}$$

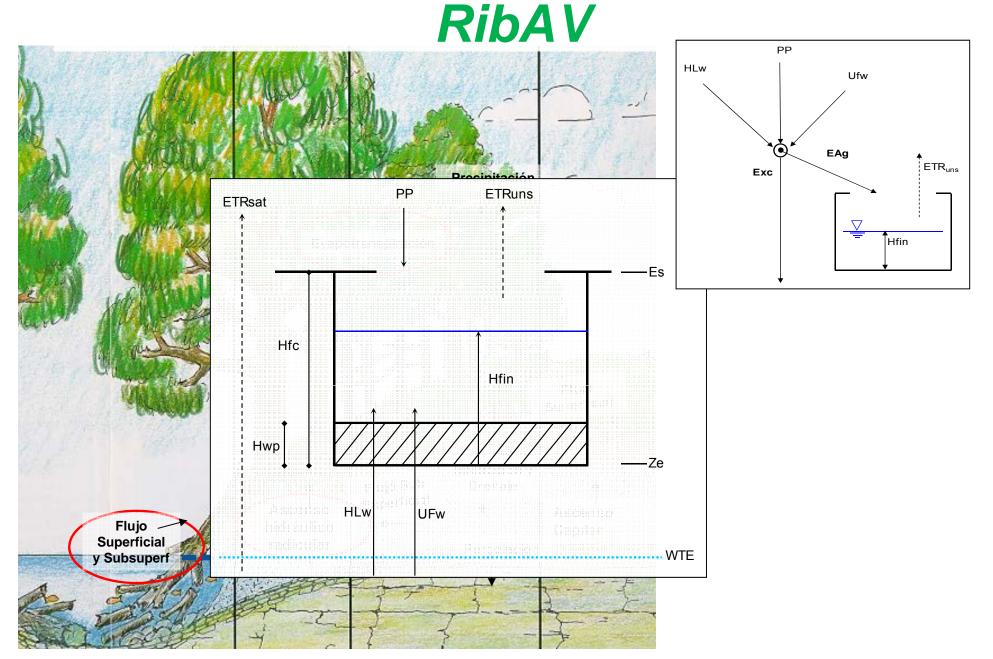
$$K(\psi)_{(t)} = Ks * \left(\frac{Hb}{\psi}\right)^{3\lambda+2}$$

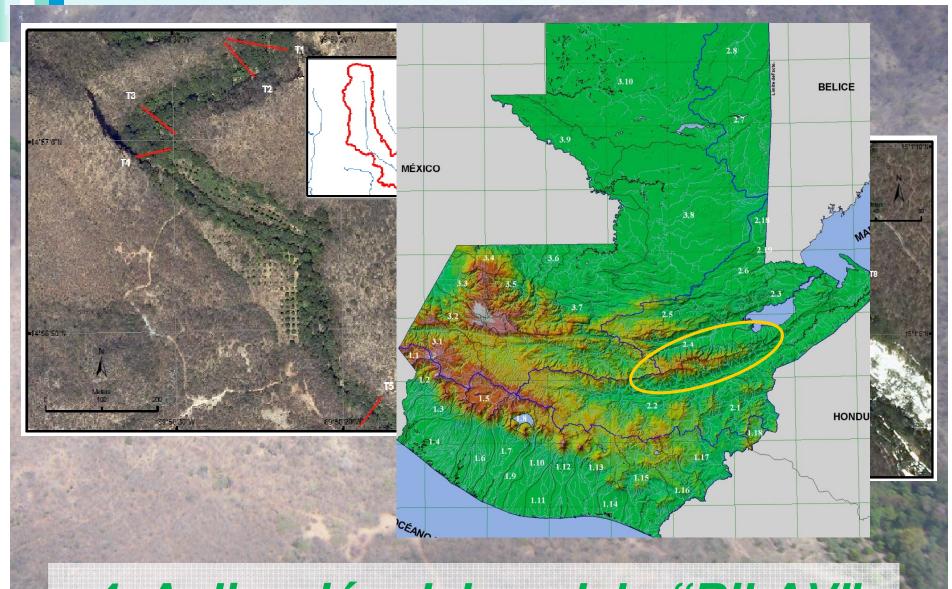


Parámetros de Vegetación de Ribera

<u>Tipos funcionales de vegetación</u> (Williams, 1998): clasificación no filogenética -respuesta y efectos ambientales similares- (Baird y Maddock III, 2005; Brookes et al, 2000; Horton et al, 2001; Morales-de la Cruz y Francés, 2009; Snyder y Williams, 2000; Stromberg, 1996; Welsch, 1991).

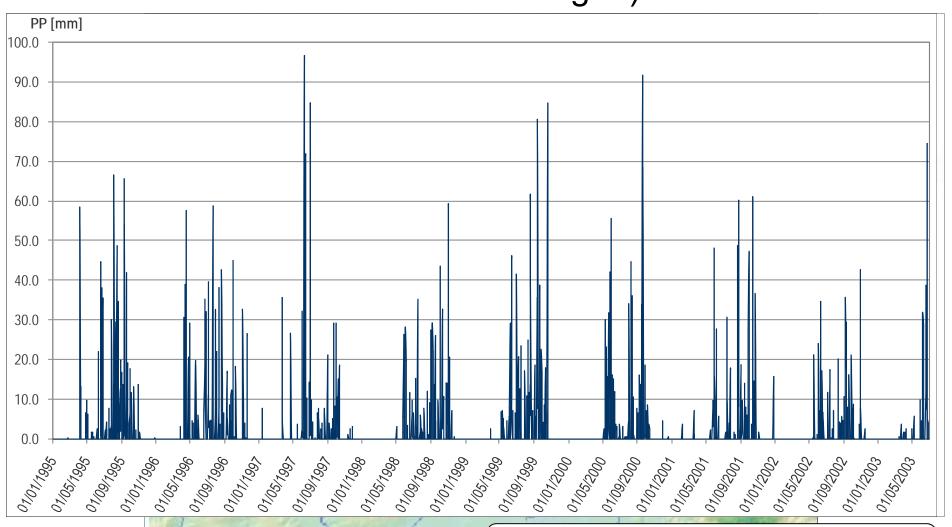
Profundidad radicular, conectividad con el nivel freático y origen del agua




Bonham, 1989; Causton, 1988; Eagleson, 2002; Maddock y Baird, 2003; Scott et al, 2003.

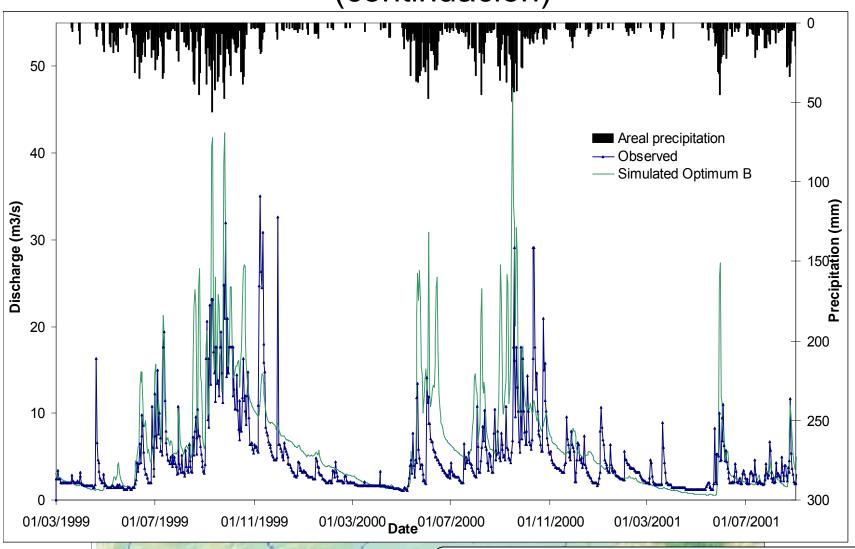
> Dawson, 1996; Horton et al, 2001; Hughes et al, 2003; Lambs, 2004; Lamontagne et al, 2005; Lite y Stromberg, 2005; Mac Nish etal, 2000; Scott et al, 2006

3. Conceptualización del Modelo

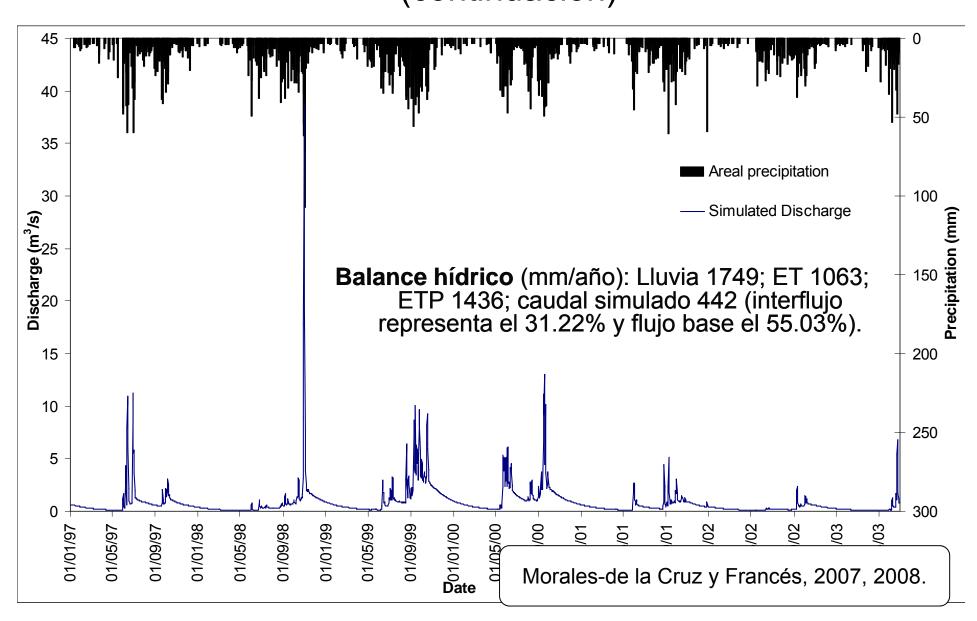


4. Aplicación del modelo "RibAV" en el Valle del Motagua, Guatemala.

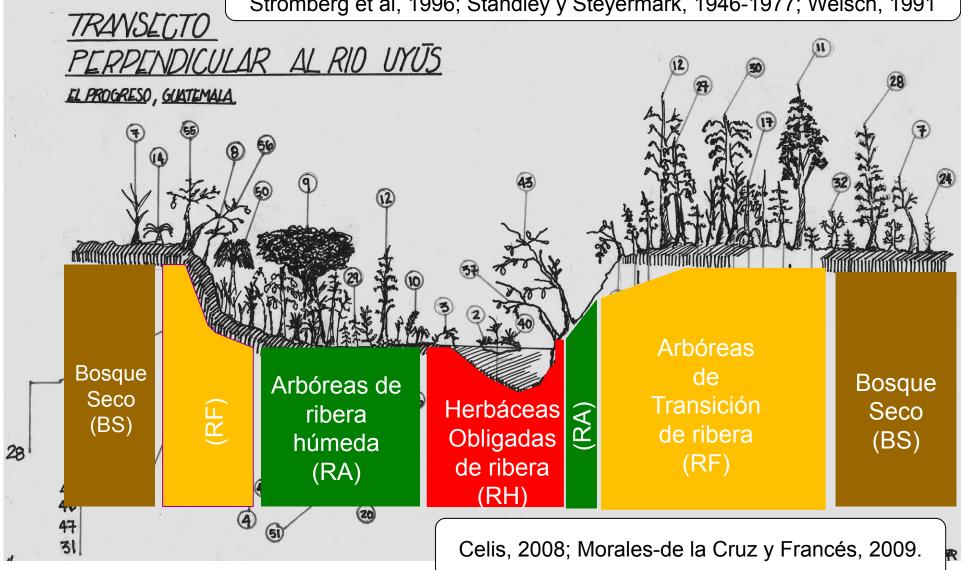
Datos hidrológicos y meteorológicos en cuencas

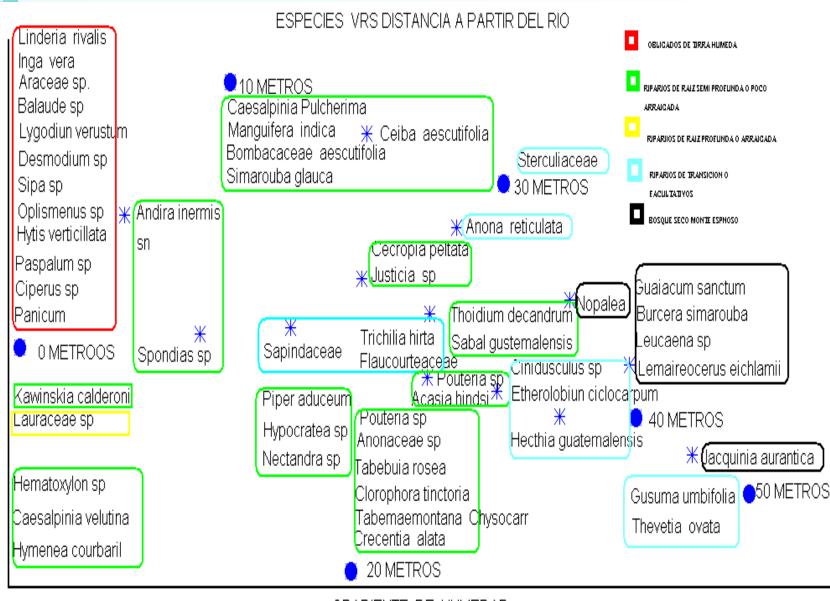

(Reserva de Biosfera UNESCO Sierra de las Minas / Valle del Motagua)

Morales-de la Cruz y Francés, 2007, 2008.

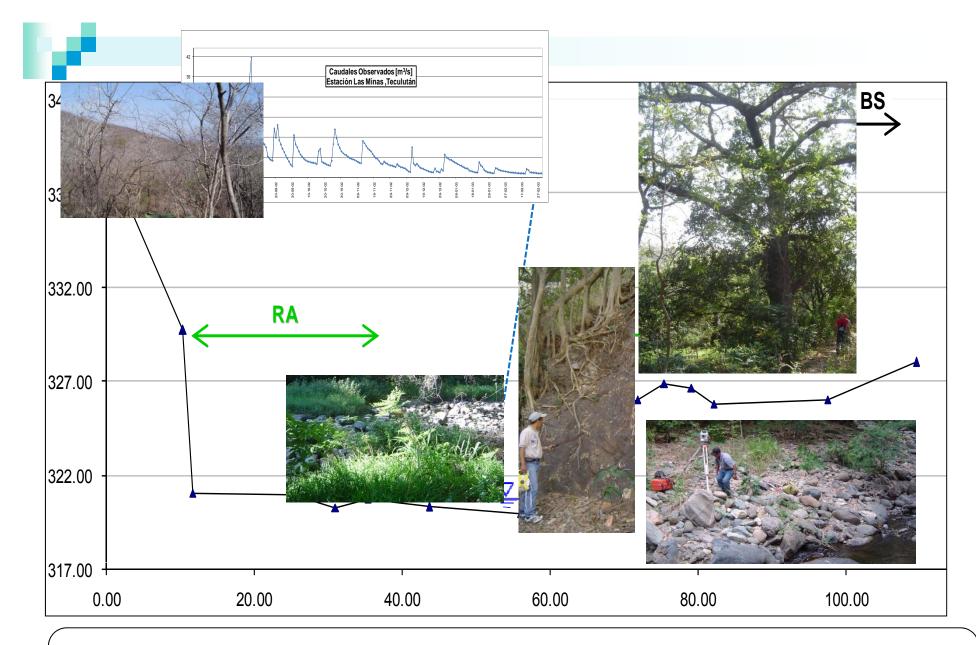

Datos hidrológicos y meteorológicos en cuencas

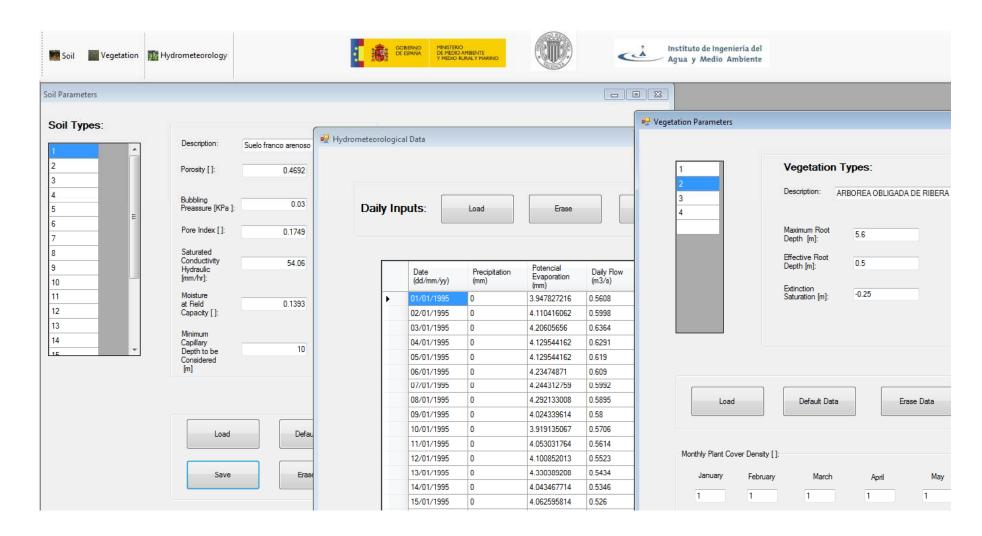
(continuación)


Morales-de la Cruz y Francés, 2007, 2008.


Datos hidrológicos y meteorológicos en cuencas (continuación)

Zonificación de la ribera por Tipos Funcionales de Vegetación


Baird y Maddock, 2005; Brookes et al, 2000; Snyder y Williams, 2000; Stromberg et al, 1996; Standley y Steyermark, 1946-1977; Welsch, 1991


GRADIENTE DE HUMEDAD

Ordenación de la vegetación con PC-ORD Decorana (Celis, 2008; McCune y Mefford, 1997)

Información de campo en Transectos. Puntos observados: 153 puntos en río Uyús y 119 en río Teculután

5. Resultados de Calibración y Validación del "RibAV v.1.0"

Parámetros de Suelo estimados

Código del tipo de suelo	Textura del suelo	$\textbf{Porosidad}^{obs}$	Índice de distribución de poros ^a	Presión de burbujeo ^a	Conductividad hidráulica saturada ^b	Humedad a capacidad de campo ^c	Profundidad máxima para ascenso capilar ^{cal}
ue suelo		Pst	Ip	Pb	Ks	Mfc	Zc _{min}
		[]	[]	[kPa]	[mm/hr]	[cc/cc]	[m]
22	Franco arenoso	0.437	0.553	0.85	32.65	0.058	10
23	Arena	0.437	0.694	0.71	88.08	0.031	10
24	Arenoso Franco	0.453	0.378	1.44	20.22	0.139	10
25	Franco arenoso	0.437	0.553	0.85	38.45	0.058	10
26	Arena	0.437	0.694	0.71	87.94	0.031	10

Fuente: obs estimado en laboratorio; a Rawls et al (1993) y calibración curva característica (Campbell, 1974); b Saxton et al (1986); c curva característica calibrada (Campbell, 1974); cal valor calibrado a partir de Canadell et al (1996) y Altier et al (2002)

Parámetros de Vegetación estimados

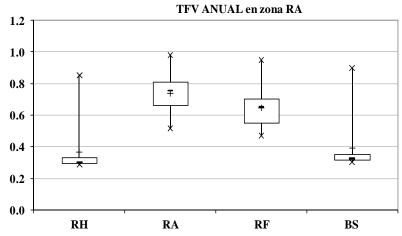
Baird y Maddock, 2005

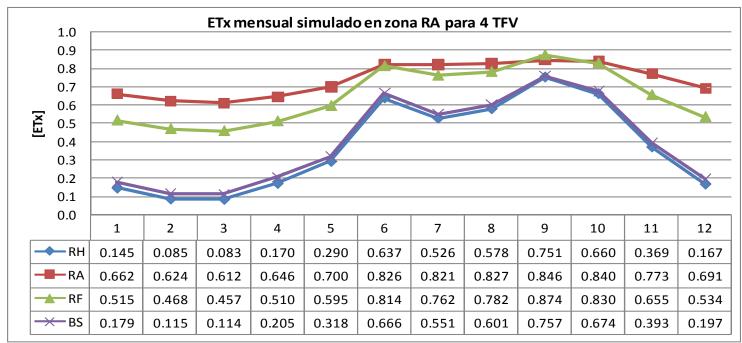
Ryel et al, 2002

Código del	Acrónimo y Descripción del	crónimo y radicular radicular saturación del saturada		transpiración de zona	interfaz raíz-	Punto de marchitez permanente	Punto de crecimiento vegetal óptimo		
TFV	TFV	Zr [m]	Ze [m]	Z _{sat} [m]	F _{est}	F _{sat} []	Crt [mmMPa ⁻¹ h ⁻¹]	P _{wp} [kPa]	P _{opt} [kPa]
1	RH, herbácea obligada de ribera	0.60	0.50	-0.75	0.80	0.20	0.97	1500	500
2	RA, arbórea de ribera húmeda	5.50	0.50	-0.10	0.44	0.56	0.97	1500	500
3	RF, arbórea facultativa de ribera	6.00	0.50	0.00	0.66	0.34	0.97	1500	500
4	BS, bosque seco	1.40	0.50	0.10	0.91	0.09	0.97	3000	500

Baird y Maddock, 2005; Canadell et al, 1996; Kellman y Roulet, 1990 Castellanos et al, 1991; Kellman y Roulet, 1990; Schulze et al, 1996 Eagleson, 2002; Guymon, 1994; Kramer y Boyer, 1995; Laio et al, 2001

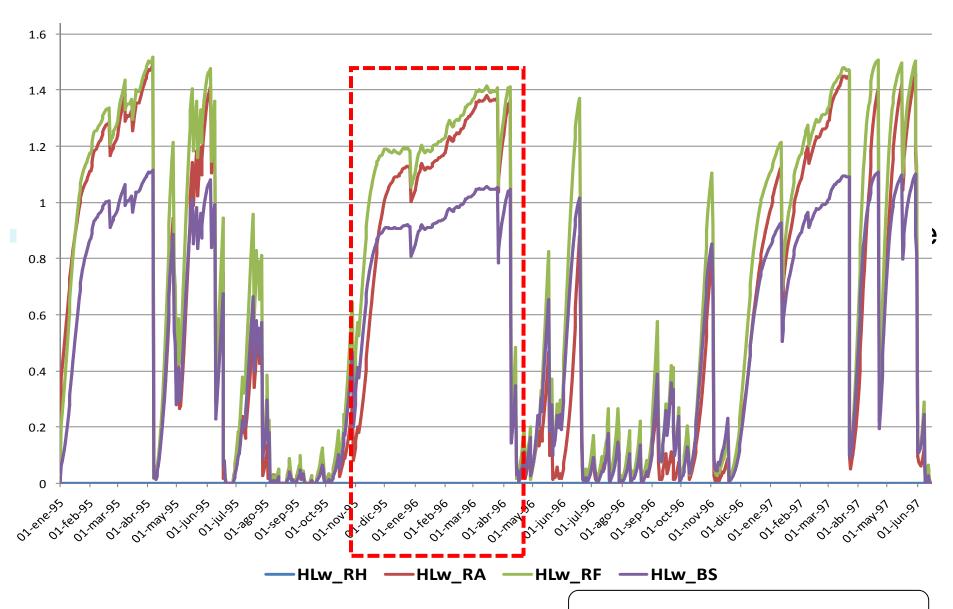
Parámetros de Vegetación calibrados con *RibAV*


Código del TFV	Descripción del	Profundidad máxima radicular	Profundidad efectiva radicular	Profundidad de extinción por saturación	Factor de transpiración de zona no saturada ^{cal3}	Factor de transpiración de zona saturada ^{cal3}	Conductividad máxima interfaz raíz- suelo	Punto de marchitez permanente ^e	Punto de crecimiento vegetal óptimo ^g
	TFV	Zr [m]	Ze [m]	Z _{sat} [m]	F _{est}	F _{sat}	Crt [mmMPa ⁻¹ h ⁻¹]	P _{wp} [kPa]	P _{opt} [kPa]
1	RH, herbácea obligada de ribera	0.66	0.50	-0.85	0.80	0.50	0.97	1500	500
2	RA, arbórea obligada de ribera	5.60	0.50	-0.10	0.42	0.72	0.97	1500	500
3	RF, arbórea facultativa de ribera	7.43	0.50	0.09	0.73	0.29	0.97	1500	500
4	BS, bosque seco	1.40	0.50	0.10	0.91	0.09	0.97	3000	500


Salida del *RibAV* y Matriz de confusión "Presencia / Ausencia" de los TFV en calibración

TFV	PRESENTES Simuladas	AUSENTES Simuladas	PRESENTES Observadas	AUSENTES Observadas	CCI	Карра
RH	7	139	12	139	0.97	0.72
RA	22	110	29	122	0.87	0.62
RF	23	107	31	120	0.86	0.60
BS	73	71	79	72	0.95	0.91
				3 TFV de Ribera	0.90	0.64

Rango de calificación	Eficiencia según calificación del índice Kappa (Landis y Koch, 1977)
0.0 - 0.4	Débil o regular
0.4 - 0.6	Moderada
0.6 - 0.8	Substancial
0.8 - 1.0	Casi perfecta


Zonificación de la Ribera con base en el *ET_{index}* del modelo *RibAV*

Relevancia del ascenso hidráulico radicular

Morales-de la Cruz y Francés, 2009

Comparación de la eficiencia del *ET_{index}* del *RibAV* con otros índices de "presencia / ausencia"

	Índices de Kappa obtenidos mediante calibración de modelos: estudio de caso Río Uyús						Índices de Kappa obtenidos mediante validación de modelos estudio de caso Río Teculután				
TFV	ET index (modelo RibAV) []	W _{Dst} (Estrés hídrico dinámico) []	I cota (Diferencia de cota al thalweg) []	ET Wdst (ET index en racha de estrés hídrico)	ETx conec (ET index durante conectividad radicular) []	ET index (modelo RibAV) []	W _{Dst} (Estrés hídrico dinámico) []	I cota (Diferencia de cota al thalweg) []	ET Wdst (ET index en racha de estrés hídrico) []	ETx conect (ET index durante conectividad radicular) []	
RH	0.72	0.28	0.64	-0.01	0.45	-	-	-	-	-	
RA	0.62	0.59	0.61	0.24	0.28	0.70	0.96	0.00	0.87	0.17	
RF	0.60	0.40	0.65	0.57	0.33	·	-	-	-	-	
BS	0.91	0.86	0.84	0.85	0.47	1.00	0.98	0.48	1.00	0.45	
3 TFV de ribera	0.90	0.52	0.64	0.45	0.36	-	Rango de calificaciór		Eficiencia según calificación del índice Kappa (Landis y Koch, 1977)		
							0.0 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0		Débil o reg Moderad Substanci Casi perfe	la ial	

6. Conclusiones

RibAV es un modelo ecohidrológico de ribera capaz de considerar la disponibilidad hídrica como el control principal del crecimiento vegetal y el dinamismo de las raíces de las plantas como control de los factores abióticos de la zona.

Se propuso y se comprobó la fortaleza del índice de Evapotranspiración "*ET_{index}*" del modelo *RibAV* para la predicción de la presencia / ausencia de los tipos funcionales de vegetación de ribera.

El *RibAV* es una herramienta que permite analizar la evapotranspiración de las plantas desde la perspectiva conjunta de la disponibilidad hídrica en las zonas no saturada y saturada.

Es relevante el papel del sistema radicular de las plantas en el balance hídrico de las riberas; cabe destacar la inclusión del movimiento de ascenso hidráulico radicular en el *RibAV*.

8. Futuras líneas de investigación

Revisar la equivalencia y/o complemento de los "factores de transpiración y fuente de agua" del *RibAV* con la distribución del sistema de raíces en el perfil del suelo.

Buscar el encuentro entre la clasificación práctica por TFV de ribera y la inclusión de más criterios autoecológicos.

Incluir más movimientos de agua en la ribera, especialmente aquellos de la conectividad superficial y subterránea con el río

Emplear datos observados de evapotranspiración de ribera para calibración y analizar el uso de "*ET_{index}*" de época seca y lluviosa para predecir ausencia/presencia vegetal.

Aplicar el modelo *RibAV* para predecir la distribución vegetal frente a potenciales escenarios de uso del agua o variabilidad climática.

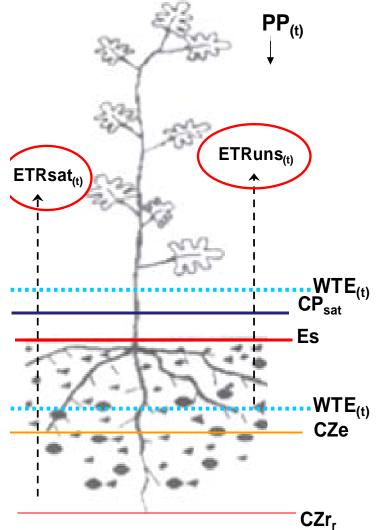
8. Principales aportes de la tesis

- Publicación y presentación de resultados en 7 congresos / conferencias internacionales.
- Al menos 10 presentaciones y 2 publicaciones en el ámbito guatemalteco.
- Sometido a consideración de la Vicepresidencia y Ministerios de Guatemala relacionados con agua y ambiente.
- Incluido como componente del proyecto "Planificación hidrológica y gobernanza del agua de Guatemala" (donación internacional de más de 30 M euros).

и

Ascenso hidráulico radicular "*HLw_(t)*" [mm]

$$HLw_{(t)} = MAX - Crt * (\psi_{fc} - \psi_{(t)}) * \left[\frac{1}{1 + (\psi_{(t)}/\psi_{50})^{3.22}} \right] * R_{j}$$



Amenu y Kumar, 2008; Caldwell y Richards, 1989; Caldwell et al, 1998; Dawson, 1993 y 1996; Hultine et al, 2003; <u>Lee et al, 2005; Ryel et al,</u> 2002 y 2003; Zheng y Wang, 2007.

Evapotranspiración Real "ETR (t)" [mm]

Caso I

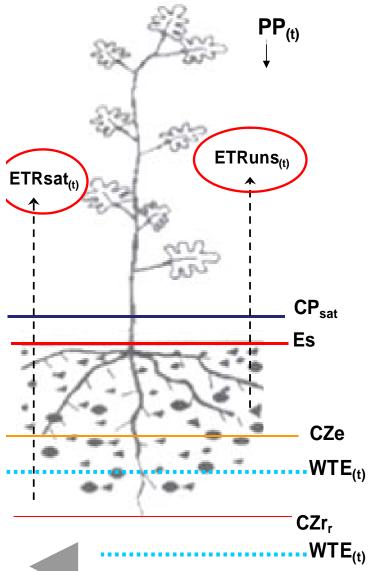
$$ETRuns_{(t)} = Cov_{(t)} \cdot ETP_{(t)} \cdot Ri \cdot \left(1 - \left(\frac{WTE_{(t)} - Cze}{CPsat - CZe}\right)\right)$$

$$ETRsat_{(t)} = MIN \begin{vmatrix} Cov \cdot ETP_{(t)} - ETRuns_{(t)} \\ Cov \cdot ETP_{(t)} \cdot Rj \cdot \left[\frac{Wte_{(t)} - CZe}{CPsat - Cze} \right] \end{vmatrix}$$

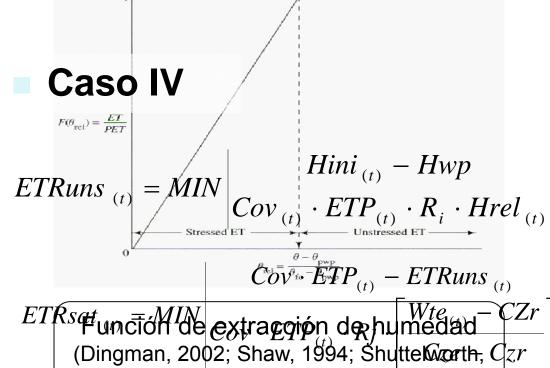
Caso II

$$ETRuns_{(t)} = 0$$

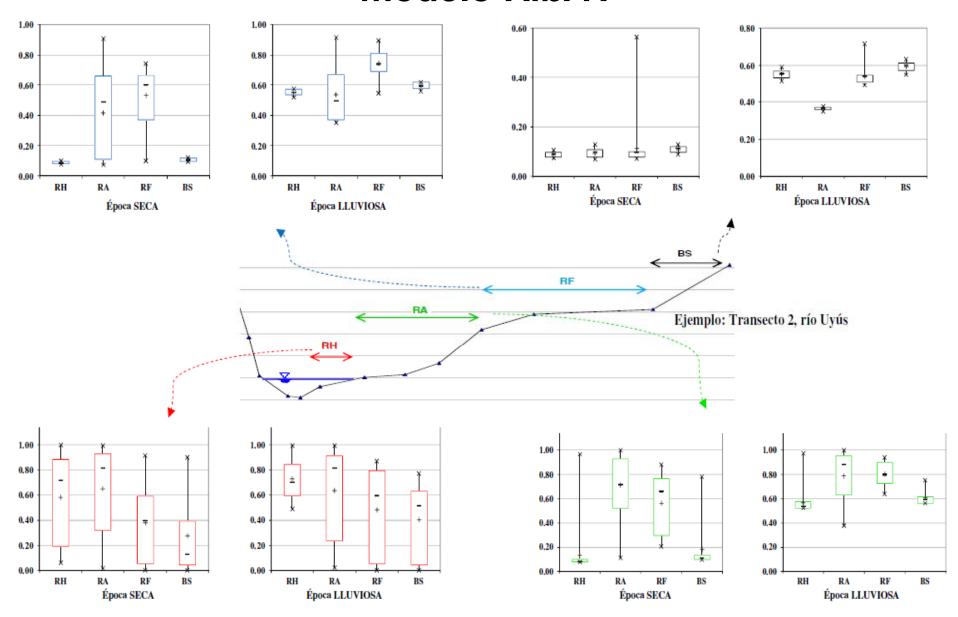
$$ETRsat_{(t)} = 0$$


 $ETRtot_{(t)} = ETRuns_{(t)} + ETRsat_{(t)}$

Altier et al., 2002; Baird & Maddock III, 2005; Rodríguez-Iturbe y Porporato, 2004; Scott et al., 2000; Stromberg et al., 1993


Evapotranspiración Real "ETR (t)" [mm]

Caso III


$$ETRsat_{(t)} = 0$$

ETRuns_(t) = MIN
$$\begin{vmatrix} Hini_{(t)} - Hwp \\ Cov_{(t)} \cdot ETP_{(t)} \cdot R_i \cdot Hrel_{(t)} \end{vmatrix}$$

1993; Ward y Robinson, 2000; Wild, 1992)

Zonificación de la Ribera con base en el *ET_{index}* del modelo *RibAV*

